Simulations of nanowire transistors: atomistic vs. effective mass models

نویسندگان

  • Neophytos Neophytou
  • Abhijeet Paul
  • Mark S. Lundstrom
  • Gerhard Klimeck
چکیده

The ballistic performance of electron transport in nanowire transistors is examined using a 10 orbital sp3d5s* atomistic tight-binding model for the description of the electronic structure, and the top-of-the-barrier semiclassical ballistic model for calculation of the transport properties of the transistors. The dispersion is self consistently computed with a 2D Poisson solution for the electrostatic potential in the cross section of the wire. The effective mass of the nanowire changes significantly from the bulk value under strong quantization, and effects such as valley splitting strongly lift the degeneracies of the valleys. These effects are pronounced even further under filling of the lattice with charge. The effective mass approximation is in good agreement with the tight binding model in terms of current– voltage characteristics only in certain cases. In general, for small diameter wires, the effective mass approximation fails.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic Full-Band Simulations of Si Nanowire Transistors: Effects of Electron-Phonon Scattering

An atomistic full-band quantum transport simulator has been developed to study threedimensional Si nanowire field-effect transistors (FETs) in the presence of electron-phonon scattering. The Non-equilibrium Green’s Function (NEGF) formalism is solved in a nearest-neighbor sp3d5s∗ tight-binding basis. The scattering self-energies are derived in the self-consistent Born approximation to inelastic...

متن کامل

Full-band atomistic study of source-to-drain tunneling in Si nanowire transistors

Source-to-drain tunneling is investigated for Si triple-gate nanowire transistors. The full-band quantum transport problem is solved in an atomistic basis using the nearestneighbor sp3d5s∗ tight-binding method. It is self-consistently coupled to the threedimensional calculation of the electrostatic potential in the device using the finite element method. This procedure is applied to the computa...

متن کامل

Engineering Nanowire n-MOSFETs at L-g < 8 nm

As metal-oxide-semiconductor field-effect transistors (MOSFETs) channel lengths (L g) are scaled to lengths shorter than L g < 8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario, a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be eng...

متن کامل

Perturbative vs Non-Perturbative Impurity Scattering in a Thin Si Gate-All-Around Nanowire transistor: A NEGF study

Nanowires are strong candidates as potential replacements for Bulk MOSFET architectures due to their better electrostatic integrity and performance. Impurity scattering is the source of series resistance that degrades the performance of small, doped nanowire transistors. In this work we have used a silicon nanowire transistor to investigate the inclusion of series resistance in quantum transpor...

متن کامل

Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations

As the active dimensions of metal-oxide field-effect transistors are approaching the atomic scale, the electronic properties of these “nanowire” devices must be treated on a quantum mechanical level. In this paper, the transmission coefficients and the density of states of biased and unbiased Si and GaAs nanowires are simulated using the sp3d5s* empirical tight-binding method. Each atom, as wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013